vllm.v1.attention.backends.utils ¶
_KV_CACHE_LAYOUT_OVERRIDE module-attribute ¶
_KV_CACHE_LAYOUT_OVERRIDE: KVCacheLayoutType | None = None
AttentionCGSupport ¶
Bases: Enum
Constants for the cudagraph support of the attention backend Here we do not consider the cascade attention, as currently it is never cudagraph supported.
Source code in vllm/v1/attention/backends/utils.py
ALWAYS class-attribute instance-attribute ¶
Cudagraph always supported; supports mixed-prefill-decode
UNIFORM_BATCH class-attribute instance-attribute ¶
Cudagraph supported for batches the only contain query lengths that are the same, this can be used for spec-decode i.e. "decodes" are 1 + num_speculative_tokens
UNIFORM_SINGLE_TOKEN_DECODE class-attribute instance-attribute ¶
Cudagraph supported for batches the only contain query_len==1 decodes
AttentionMetadataBuilder ¶
Source code in vllm/v1/attention/backends/utils.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | |
reorder_batch_threshold class-attribute instance-attribute ¶
reorder_batch_threshold: int | None = None
supports_update_block_table class-attribute instance-attribute ¶
supports_update_block_table: bool = False
__init__ abstractmethod ¶
__init__(
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: device,
)
Source code in vllm/v1/attention/backends/utils.py
_init_reorder_batch_threshold ¶
_init_reorder_batch_threshold(
reorder_batch_threshold: int | None = 1,
supports_spec_as_decode: bool = False,
supports_dcp_with_varlen: bool = False,
) -> None
Source code in vllm/v1/attention/backends/utils.py
build abstractmethod ¶
build(
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
fast_build: bool = False,
) -> M
Central method that builds attention metadata. Some builders (MLA) require reorder_batch to be called prior to build.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
common_prefix_len | int | The length of the common prefix of the batch. | required |
common_attn_metadata | CommonAttentionMetadata | The common attention metadata. | required |
fast_build | bool | The meta-data will prioritize speed of building over then speed at execution. Can be used for spec-decode where the result of a build call may only be used for few layers/iters. | False |
Source code in vllm/v1/attention/backends/utils.py
build_for_cudagraph_capture ¶
build_for_cudagraph_capture(
common_attn_metadata: CommonAttentionMetadata,
) -> M
Build attention metadata for CUDA graph capture. Uses build by default. Subclasses that override this method should call self.build or super().build_for_cudagraph_capture.
Source code in vllm/v1/attention/backends/utils.py
build_for_drafting ¶
build_for_drafting(
common_attn_metadata: CommonAttentionMetadata,
draft_index: int,
) -> M
Build attention metadata for draft model. Uses build by default.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
common_attn_metadata | CommonAttentionMetadata | The common attention metadata. | required |
draft_index | int | The index of the current draft operation. When speculating a chain of tokens, this index refers to the draft attempt for the i-th token. For tree-based attention, this index instead refers to the draft attempt for the i-th level in the tree of tokens. | required |
Source code in vllm/v1/attention/backends/utils.py
get_cudagraph_support classmethod ¶
get_cudagraph_support(
vllm_config: VllmConfig, kv_cache_spec: AttentionSpec
) -> AttentionCGSupport
Get the cudagraph support level of this builder class.
Source code in vllm/v1/attention/backends/utils.py
update_block_table ¶
Update the block table for the attention metadata. Faster when theres multiple kv-cache groups that create virtually the same metadata but just with different block tables.
Only needs to be implemented if supports_update_block_table is True.
Source code in vllm/v1/attention/backends/utils.py
CommonAttentionMetadata dataclass ¶
Per-batch attention metadata, shared across layers and backends. AttentionMetadataBuilder instances use it to construct per-layer metadata.
For many of the tensors we keep both GPU and CPU versions.
Source code in vllm/v1/attention/backends/utils.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | |
_num_computed_tokens_cpu class-attribute instance-attribute ¶
_num_computed_tokens_cpu: Tensor | None = None
dcp_local_seq_lens_cpu class-attribute instance-attribute ¶
dcp_local_seq_lens_cpu: Tensor | None = None
Sequence lengths of the local rank in decode context parallelism world
encoder_seq_lens_cpu class-attribute instance-attribute ¶
encoder_seq_lens_cpu: ndarray | None = None
logits_indices_padded class-attribute instance-attribute ¶
logits_indices_padded: Tensor | None = None
query_start_loc_cpu instance-attribute ¶
query_start_loc_cpu: Tensor
(batch_size + 1,), the start location of each request in query Tensor
seq_lens instance-attribute ¶
seq_lens: Tensor
(batch_size,), the number of computed tokens for each request
__init__ ¶
__init__(
query_start_loc: Tensor,
query_start_loc_cpu: Tensor,
seq_lens: Tensor,
num_reqs: int,
num_actual_tokens: int,
max_query_len: int,
max_seq_len: int,
block_table_tensor: Tensor,
slot_mapping: Tensor,
causal: bool = True,
logits_indices_padded: Tensor | None = None,
num_logits_indices: int | None = None,
encoder_seq_lens: Tensor | None = None,
encoder_seq_lens_cpu: ndarray | None = None,
dcp_local_seq_lens: Tensor | None = None,
dcp_local_seq_lens_cpu: Tensor | None = None,
_seq_lens_cpu: Tensor | None = None,
_num_computed_tokens_cpu: Tensor | None = None,
) -> None
unpadded ¶
unpadded(
num_actual_tokens: int, num_actual_reqs: int
) -> CommonAttentionMetadata
Source code in vllm/v1/attention/backends/utils.py
PerLayerParameters dataclass ¶
Currently, FlashInfer backend only support models in which all layers share the same values for the following hyperparameters. Should not be used for trtllm-gen backend since it supports different values for the following hyperparameters.
Source code in vllm/v1/attention/backends/utils.py
_make_metadata_with_slice ¶
_make_metadata_with_slice(
ubatch_slice: UBatchSlice,
attn_metadata: CommonAttentionMetadata,
) -> CommonAttentionMetadata
This function creates a new CommonAttentionMetadata that corresponds to the requests included in ubatch_slice
Source code in vllm/v1/attention/backends/utils.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | |
compute_causal_conv1d_metadata ¶
compute_causal_conv1d_metadata(query_start_loc_p: Tensor)
Source code in vllm/v1/attention/backends/utils.py
create_fast_prefill_custom_backend ¶
create_fast_prefill_custom_backend(
prefix: str, underlying_attn_backend: AttentionBackend
) -> type[AttentionBackend]
Source code in vllm/v1/attention/backends/utils.py
get_dcp_local_seq_lens ¶
get_dcp_local_seq_lens(
seq_lens: Tensor,
dcp_size: int = 1,
dcp_rank: int | None = None,
cp_kv_cache_interleave_size: int = 1,
) -> Tensor
While using dcp, kv_cache size stored on each rank may be different, use this function to calculate split decode seq_lens of each dcp rank. Only consider dcp now, we can extend the case of cp based on this.
Source code in vllm/v1/attention/backends/utils.py
get_kv_cache_layout cached ¶
Source code in vllm/v1/attention/backends/utils.py
get_per_layer_parameters ¶
get_per_layer_parameters(
vllm_config: VllmConfig,
layer_names: list[str],
cls_: type[AttentionImpl],
) -> dict[str, PerLayerParameters]
Scan layers in layer_names and determine some hyperparameters to use during plan.
Source code in vllm/v1/attention/backends/utils.py
infer_global_hyperparameters ¶
infer_global_hyperparameters(
per_layer_params: dict[str, PerLayerParameters],
) -> PerLayerParameters
Currently, FlashInfer backend other than trtllm-gen only support models in which all layers share the same values for the following hyperparameters: - window_left - logits_soft_cap - sm_scale
So this function asserts that all layers share the same values for these hyperparameters and returns the global values.
Source code in vllm/v1/attention/backends/utils.py
is_valid_kv_cache_layout ¶
make_kv_sharing_fast_prefill_common_attn_metadata ¶
make_kv_sharing_fast_prefill_common_attn_metadata(
common_attn_metadata: CommonAttentionMetadata,
) -> CommonAttentionMetadata
Source code in vllm/v1/attention/backends/utils.py
make_local_attention_virtual_batches ¶
make_local_attention_virtual_batches(
attn_chunk_size: int,
common_attn_metadata: CommonAttentionMetadata,
block_size: int = 0,
) -> tuple[
CommonAttentionMetadata, Callable[[Tensor], Tensor]
]
Source code in vllm/v1/attention/backends/utils.py
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 | |
reorder_batch_to_split_decodes_and_prefills ¶
reorder_batch_to_split_decodes_and_prefills(
input_batch: InputBatch,
scheduler_output: SchedulerOutput,
decode_threshold: int = 1,
) -> bool
Reorders the batch to split into prefill and decode requests; places all requests with <= decode_threshold tokens at the front of the batch.
Returns:
| Type | Description |
|---|---|
bool | True if the batch was modified, False otherwise. |
Source code in vllm/v1/attention/backends/utils.py
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 | |
reshape_attn_output_for_spec_decode ¶
Reshapes the attention output tensor, so that the batch_size and seq_len dimensions are combined.
Source code in vllm/v1/attention/backends/utils.py
reshape_query_for_spec_decode ¶
Reshapes the query tensor for the specified batch size, so that it has shape (batch_size, seq_len, num_heads, head_dim).
Source code in vllm/v1/attention/backends/utils.py
set_kv_cache_layout ¶
set_kv_cache_layout(cache_layout: KVCacheLayoutType)
slice_query_start_locs ¶
Creates a new query_start_loc that corresponds to the requests in request_slice.
Note: This function creates a new tensor to hold the new query_start_locs. This will break cudagraph compatibility.
Source code in vllm/v1/attention/backends/utils.py
split_attn_metadata ¶
split_attn_metadata(
ubatch_slices: list[UBatchSlice],
common_attn_metadata: CommonAttentionMetadata,
) -> list[CommonAttentionMetadata]
Creates a new CommonAttentionMetadata instance that corresponds to the requests for each UBatchSlice in ubatch_slices.
Note: This function does not modify common_attn_metadata
Source code in vllm/v1/attention/backends/utils.py
split_decodes_and_prefills ¶
split_decodes_and_prefills(
common_attn_metadata: CommonAttentionMetadata,
decode_threshold: int = 1,
require_uniform: bool = False,
) -> tuple[int, int, int, int]
Assuming a reordered batch, finds the boundary between prefill and decode requests.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
common_attn_metadata | CommonAttentionMetadata | CommonAttentionMetadata object containing the batch metadata. | required |
decode_threshold | int | The maximum query length to be considered a decode. | 1 |
require_uniform | bool | If True, requires that all decode requests have the same query length. When set, some queries may be considered prefills even if they are <= decode_threshold, in order to ensure uniformity. | False |
Returns:
| Name | Type | Description |
|---|---|---|
num_decodes | int | The number of decode requests. |
num_prefills | int | The number of prefill requests. |
num_decode_tokens | int | The number of tokens in the decode requests. |
num_prefill_tokens | int | The number of tokens in the prefill requests. |
Source code in vllm/v1/attention/backends/utils.py
split_decodes_prefills_and_extends ¶
split_decodes_prefills_and_extends(
common_attn_metadata: CommonAttentionMetadata,
decode_threshold: int = 1,
) -> tuple[int, int, int, int, int, int]
Assuming a reordered batch, finds the boundary between prefill and decode requests.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
common_attn_metadata | CommonAttentionMetadata | CommonAttentionMetadata object containing the batch metadata. | required |
decode_threshold | int | The maximum query length to be considered a decode. | 1 |
Returns:
| Name | Type | Description |
|---|---|---|
num_decodes | int | The number of decode requests. |
num_extends | int | The number of extend requests. |
num_prefills | int | The number of prefill requests. |
num_decode_tokens | int | The number of tokens in the decode requests. |
num_extend_tokens | int | The number of tokens in the extend requests. |
num_prefill_tokens | int | The number of tokens in the prefill requests. |
Source code in vllm/v1/attention/backends/utils.py
split_prefill_chunks ¶
split_prefill_chunks(
seq_lens_cpu: Tensor,
workspace_size: int,
request_offset: int = 0,
) -> list[tuple[int, int]]
Split the prefill requests into chunks such that the total sequence length of each chunk is less than or equal to the workspace size.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
seq_lens_cpu | Tensor | The sequence lengths of the prefill requests on CPU. | required |
workspace_size | int | The maximum workspace size (in tokens) per chunk. | required |
request_offset | int | The offset to add to the request indices. | 0 |
Returns: A list of tuples of (reqs_start, reqs_end) representing chunk boundaries.
Source code in vllm/v1/attention/backends/utils.py
subclass_attention_backend ¶
subclass_attention_backend(
name_prefix: str,
attention_backend_cls: type[AttentionBackend],
builder_cls: type[AttentionMetadataBuilder[M]],
) -> type[AttentionBackend]
Return a new subclass where get_builder_cls returns builder_cls.
Source code in vllm/v1/attention/backends/utils.py
subclass_attention_metadata ¶
subclass_attention_metadata(
name_prefix: str,
metadata_cls: Any,
fields: list[tuple[str, Any, Any]],
) -> Any
Return a new subclass of metadata_cls with additional fields